7AD-A132 740

UNCLASSIFIED

BOULDER DEPT OF COMPUTER SCIENCE G M CLEMM JAN 83
CU-CS-248-83 ARQ-15074-14-MA DAAG29-78-G-0046
F/G 9/2

ot
umo

FSCAN-83 REPORT AND USER'S MANUAL{U) COLORADO UNLV AT

ig b
, ——— T F j22
) =& oo M=
£

i, 5 f
=

Mizs fles. gee.

MICROCOPY RESOLUTION TEST CHART
suneay OF ~1963-A

e e e imm e e
v T
———— . -

OTIC ALE COPY

e e o Te—

pep /S0 25y 177

UNIVERSITY OF COLORADO
%:.,_,‘.»Lum.w,, 0™ > s RS
3

FSCAN-83 Report and User's Manual

3 by

£

o Geoffrey M. Clemm

i 4 Department of Computer Science
3 University of Colorado at Boulder
r% Boulder, Colorado 80309

January 1983

oy v T e e
ST AN T SN

DEPARTMENT OF COMPUTER SCIENCE
CAMPUS BOX 430

UNIVERSITY OF COLORADO, BOULDER
BOULDER, COLORADO 80309

Technical Report

SYDTIC

(S
serzzm Q

This dovument haa been ap - E
for public relmian rul sals; ite

cerihution Is unlimited,

2 AR S S

FSCAN-83 Report and User's Manual

by

Geoffrey M. Clemm
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

Cu~-Cs~248-83 January 1983

INTERIM TECHNICAL REPORT
U. S. ARMY RESEARCH OFFICE
CONTRACT NO. DAAG29-78-G-0046

Approved for public release; D ‘ ‘O ﬁ

Distribution Unlimited mr‘] ECTE

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO
DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

We acknowledge U. S. Army Research support
under contract no. DAAG29-78-G-0046
and National Science Foundation support
under grant no. MCS77-02194

e e a8 e e

Anclassified -
' SECURITY CLASSIFICATION OF THIS PAGE When Data Entered)

REPORYT DOCUMENTATION PAGE BEF o o O R
T, REPORT NUMBER 2. GOVY ACC§3§ ~NoJ 3. sicmeur's CATALOG NUMBER

-
4. TITLE (and Subticle) S. TYPE OF REPORT 8 PERIOD COVERED

FSCAN-83 Report and User's Manua) Technical

6. PERFORMING ORG. REPORY NUMBER

7. AUTHOR(e) 8. CONTRACTY OR GRANT NUMBER(s)

Geoffrey M. (lemm DAAG29 78 G 0046

’ 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gg%A:osékﬂdsr?t:ur:‘o;ggs‘f. TASK
University of Colorado
Boulder, CO 80309
1. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE
U. 5. Army Research Office Jan 83
Post Office Box 12211} '3 NUMBER OF PAGES

. Research Triangle Park, NC 27709

1 14 MONITORING AGENCY NAME & ADORESS(! different from Controlling Oflice) 1S. SECURITY CL ASS. (of thie report)

n i i r——————————————
5a. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

, 16. DISTRIBUTION STATEMENMT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, 1l different from Report)

18, SUPPLEMEMTAHRY NOQTES

The view, opinions, and/or findings contained in this report are those of the
aut?or(s) and.ﬁhould not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation

19. KEY WORDS (Cuntinue on reveree eide Il necessary and tdentify by block number)

computer proqrams

proaramming languages

compilers

object code

13 ABSTRACT (Contime an reverse olde y and ty by block number)

—/FSCAN is a language for specifying the lexical analysis of programs written in
any current programming language, including FORTRAN. This report describes the
FSCAN language, a compiler for the language, and an interpreter for the resultin
object code. The interpreted object code forms an efficient lexical analyzer thi
takes as input a stream of characters and produces as output a stream of tokens
(lexical units). The compile d interpreter are designed for portability. BotH
are written in ANSI FORTRAN"(1966) supplemented by a small number of short machi
dependent subroutines. Included is an FSCAN program describing a FORTRAN-77 lexﬂzal

[

Vieee s I3 toniomor 1 wovesis o.loun UNCLASS IF 1 ED analyzer.
R 0 9 e 0 0 SECUMTY CLASSIFICATION OF THIS PAGE (When Dete Bnterad)

Abstract

FSCAN is a language for specifying the lexical analysis
of programs written 1in any current programming language,
including FORTRAN. This report describes the FSCAN
language, a compiler for the language, and an interpreter
for the resulting object code. The interpreted object code
forms an efficient lexical analyzer that takes as input a
stream of characters and produces as output a stream of
tokens (lexical units). The compiler and interpreter are
designed for portability. Both are written in ANSI FORTRAN
(1966) supplemented by a small number of short machine
dependent subroutines. Included 1is an FSCAN program
describing a FORTRAN~77 lexical analyzer.

Accession For

s

NTIS ™1 N
DTIC T2 g

Unann -~ o 9 M
Justificatien _ |
By

Distribution/

Availability Codes

Avail and/or
Dist Special

IS B

1l. INTRODUCTION

The first phase of the analysis of a computer program
is ‘“lexical analysis" or "scanning", where the source text
is broken up into the words or "tokens" of the programming
language. For most languages this 1is a relatively
straightforward task, as spaces or some other delimiter are
required at any token separation points that could be
ambiguous. Unfortunately the ANSI FORTRAN standards [1,2]
specify that spaces for the most part are meaningless in
FORTRAN programs. This creates several ambiguous situations
that cannot without backtracking be resolved by a left-to-
right scan with single character look-ahead of the source
text. For example, if the string "DO" has been read, it is
unclear whether the scan has reached the end of the keyword,
"DO", in a statement such as

DO 10 I =1, 3

or whether the scan 1is in the middle of a variable name in a
statement such as

DO10I =1 + X

The problem of the 1lexical analysis of FORTRAN is
further complicated by the existence of numerous dialects
and extensions of FORTRAN that vary according to the
installation and particular compiler in use. The problem is
therefore most acute for a system such as the DAVE software
validation system [3] where it 1is desirable that all
variants of FORTRAN be readable. Ordinarily this would
entail recoding the lexical analyzer module for each new
FORTRAN variant, in addition to maintaining a library of
already coded lexical analyzer modules.

To minimize these tasks, the FSCAN Lexical Analyzer
Generating System was developed. The FSCAN system consists
of a language, a compiler for the language, and an
interpreter for the object code produced by the FSCAN
compiler. The FSCAN language and the LR style processing
were initially specified by DeRemer [4].

e

-

2. THE LANGUAGE

The FSCAN language (henceforth referred to simply as
“FSCAN") was designed to allow the specification of a
complex lexical analyzer, such as that required by FORTRAN,
in as concise and understandable a manner as possible.

An FSCAN program consists of the keyword, TOKENS,
followed Dby a list of the tokens to be generated, followed
by a single FSCAN procedure (within which may be defined
additional procedures) terminated by a period. An FSCAN
procedure specifies in an extended BNF-style notation a
grammar that describes a left-to-right pass over the source
text. During this pass each character is examined and
depending on the character and the current state of the
lexical analyzer, one of the following actions is taken:

l. mark the character as kept or deleted and move ahead to
the next character

2. call an FSCAN procedure
3. exit an FSCAN procedure
4. exit an FSCAN procedure and backup to the state and
location 1in the source text at which the procedure was

called

5. perform a specific token-action

The compiler verifies that an FSCAN program specifies a
ceterministic lexical analyzer, i.e., that for any state of
the analyzer, the next action to be performed can be
uniquely determined from the character currently being
examined.

. .‘F‘"‘\v—%.‘?, ’ =
XY o -

e — e e B e

3.;. Procedures

Syntax

An FSCAN procedure or "scanner" consists of a sequence
of grammatical rules delimited by the keywords, 'SCANNER'
and 'END'. Following each of these keywords 1is the goal
symbol for the sequence of rules; this also serves as the
name of the procedure. The redundant repetition of the goal
symbol 1s wused by the FSCAN compiler to ensure that the
'SCANNER' - 'END' pairs are matched in the way the
programmer intended. Each rule in the sequence is i
terminated by a semicolon. :

Examgle
SCANNER DIG:
rule 1; rule 2; ... rule n;
END DIG
Semantics

One of the rules must be a definition for the goal
symbol of the procedure. This rule specifies the finite-
state stack-automaton scan of the source text which 1is
performed when the procedure 1is called. The scan is
performed in a longest match manner; namely, given the
choice between finishing and scanning more of the source
text, the procedure will always continue scanning.

2.2. Rules

An FSCAN rule is either a macro rule or a procedure
rule. The scope of rule definitions corresponds to that of
ALGOL.

g.g.i. Macro Rules

As in a BNF rule, the left side of a macro rule 1is a
nonterminal while the right side 1is a sequence of
alternatives. Each alternative may have an associated
token-action, and an alternative, rather than being only a
sequence of terminals and nonterminals, may contain any of a
variety of operators, in the style of regular expressions,
as well as parentheses for grouping.

Syntax
' Each alternative is preceded by a single-right-arrow
{ ->). The optional token-action is placed at the end of
B the corresponding alternative and is preceded by a double-
v right-arrow (=>).
Example

TEXT -> fscan_reg_exprn_l => action_l
~-> fscan_reg_exprn 2
~> fscan_reg exprn 3 => action_2

Semantics

A macro rule is a standard macro in that the right part
of the rule textually replaces any occurrence of the left
part, when the occurrence is in an FSCAN regular expression
within the scope of the macro rule definition. A macro rule
cannot be recursively defined except through a procedure

rule call. Thus in the above example, the nonterminal,
TEXT, could not appear in any of the three FSCAN regular
expressions in the right part, but the following

construction would be legal:

TEXT1 -> fscan_reg exprn_containing_TEXT2;

SCANNER TEXT2:
TEXT2 -> fscan_reg_exprn_containing_ TEXTI1;
ZND TEXT2;

This is legal since execution time recursion is implemented,
whereas recursively defined macros without intervening
procedure rule calls would imply infinite textual expansion
of the macro.

During execution of the interpreter, after an
alternative has been successfully matched with the source
text, the corresponding token-action, if any, is performed.

A procedure rule is simply an FSCAN procedure.

‘? Semantics

Co During execution of the interpreter, when a nonterminal
: associated with a procedure rule is to be matched with the
source text, the appropriate procedure is called.

i —— . . R,

2.3. FSCAN Regular Expressions (abbreviation: FRE)

2.3.1. Atomic units

The atomic units of an FRE are terminals, integers, and
nonterminals.

2.3.1.1. Terminals
Syntax

A terminal is either a ‘"kept-string” or a "deleted-
string." A kept-string is a sequence of characters enclosed
in double quotes (") while a deleted-string is a sequence of
characters enclosed 1in single quotes ('). If a sharp (#)
appears in the string, the sharp 1is ignored and the
immediately following character is treated as the next
character of the string, even 1if that character 1is a

double~quote, or a sharp. For terminals the strings are
restricted to be of length zero, length one, or the string
of length three, EOL. A length =zero string matches no

character, a length one string matches the character of that
string, and EOL represents the end-of-line character.

Examples
(LN} [} IAI " _n l##l "#ll " "EOL" lEOLI
Semantics
The character of the terminal is compared with the next
character of the source text. If they match, the source
text character is imarked as "kept" or "deleted", depending
on whether the terminal 1s a kept-string or a deleted-

string, and then the next character in the source text is
examined.

2.3.1.2. Nonterminals

Syntax

A nonterminal is a sequence of letters and digits, the
first of which is a letter.

Examgles
A TEMP TEMP1l B3B

Semantics

Nonterminals can name macro rules or procedure rules.

As mentioned earlier, macro rule names are textually
i replaced by the right part of the macro defining rule, for
which the semantics have been described. When the
nonterminal names a procedure, it indicates that the

appropriate procedure is to be called during execution.

g'é'l'é' Integers

An integer 1s a string of digits.
' Examples
54 0 05 1234567890
Semantics

Integers have their usual meaning.

2.3.2. Operations

The operations used to compose FSCAN regular
expressions are divided 1into two types: Dbasic operations
and extenued operations. Let A, B, C be FRE's, let a, b, ¢

T be characters, and let n be a non-negative integer.

! 2.3.2.1. Basic Operations

syntax
|
Alternation : A/ B /J C [/ . ..
Concatenation : A B C .
Repetition : A*
Negation : NOT A
Example

NOT (n'u/u;lc/u?u) 'X'*

Semantics

An alternation successfully matches the source text 1if
any of 1its alternates do. A concatenation matches the

B LTI \PUUE

source text if its operands sequentially match the source
text. A repetition matches an arbitrary number (possibly
zero) of its operand with the source text. The operand of a
negation is restricted to regular expressions that specify a
set of characters, all of which are kept-strings or all of
which are deleted-strings. A negation then matches any
character that is not in its operand's character set. 1f
matched, a source character is marked as "kept" or "deleted"
1f the operand character set consists of kept-strings or
deleted-strings, respectively.

2.3.2.2. Extended Operations

Syntax
<> : <abc...> = ('a' 'b' ‘¢' ...)
<<>> : <<abcC...>> = ("a" "b" “c" ...)
+ : A+ = A A*
? + A? =a/ ()
// :+ A//B = A (BA*
ELSE : A ELSE B ELSE ... =aA / B /J ...
** . A**p ZA A ... A (n times)
: A**(n) = A2 A? .. A? (n times)
s A**() EA*

Restrictions: The operands of ELSE and the first operand of
** are restricted to being the names of proceaures.

Semantics

The semantics of the extended operations are largely
determined by those of the basic operations by which they
are defined. The operators, ELSE and *¥*, are only
approximately equivalent to their respective syntactic
expansions, because they possess the following additional
properties:

ELSE

The ELSE construct provides a backtrack feature where
if the first operand fails to successfully match a segment
of the source text, the second operand is tried on the same
segment, etc. Once the final operand is invoked, match
failure will cause standard error recovery, rather than the

backtrack feature.

*xp

The only distinction between **n and its syntactic
expansion occurs when the exponent, n, is zero. 1In this
case A**0 matches the input stream only if A would match the
next character 1in the input stream. Since the exponent is
0, no characters are actually matched by A, only the check
is performed. This can be used to cause the success or
failure of a particular branch of the ELSE operator.

**(n)

The **(n) operator provides limited backup, in the
sense that, if less than n A's have been successfully
matched, the scan 1s backed up to the state at which the
last A (possibly no A's) has been successfully matched.

**()
The **() operator is the same as the **(n) operator

except that there is no limit to the number of A's that can
be matched.

2.4. Token-Actions

Syntax
A token-action is a kept or deleted string followed by
a nonterminal in parentheses. Either the string or the

nonterminal in parentheses may be omitted.

Examglgg
“NAME" (KEYWORD) "STRING" {OPERATOR) 'BEGIN'

Semantics

A token-action generates a sequence of characters
consisting of all characters marked as kept since the last
token-action. The presence of a nonterminal in parentheses
indicates that this sequence of characters is to Dbe
"screened" or rescanned by the procedure rule named by the
nonterminal. If the screening procedure completely
processes the characters without encountering any erroneous
or "unmatchable" characters, all actions generated during
the screening (including token-actions) are performed;
otherwise, all such actions are 1ignored and a token is
output. The string of the token-action names the type of
the token to be output. All such strings used by an FSCAN
program must be listed following the keyword, TOKENS, at the
beginning of the FSCAN program. During runtime, the
generation of the n'th token in this list 1is indicated by
the output of the integer n+l (the integer, 1, indicates
end-of-file).

If the string is omitted, the screening is
unconditionally performed with standard error recovery at
erroneous characters. If the nonterminal in parentheses 1is

omitted the token is unconditionally output, without any
preceding attempt to screen.

2.4.1. End-of-File Token-Action

A special token is reserved to 1indicate the end of
scanner processing. After this token has been generated,
all following requests for tokens from the scanner will
result in the return of this special token. The procedure
that is the FSCAN program, i.e.,

TOKENS ...

SCANNER LEXANLYZ :
LEXANLYZ -> .o
END LEXANLYZ.

is conceptually embedded in the following context:

- 11 -

TOKENS EOFTOK ...
SCANNER DEFAULT :
DEFAULT -> LEXANLYZ EOF ;
EOF => () => 'EOFTOK' ;
SCANNER LEXANLYZ : ... END LEXANLYZ ;
END DEFAULT.

EOFTOK is therefore predefined in all FSCAN prograwms and is
indicated during runtime by the output of the integer, 1.

2.4.2. Evaluation Token-Action

The FORTRAN Hollerith constant reguires special
treatment by the lexical analyzer. In particular, the
lexical analyzer must be driven by a numeric value contained
in the source text. To provide this function, a special
"evaluate" token-action is included in FSCAN.

Szntax

The normal screening nonterminal 1is replaced by an
equals sign.

Examples
(=) “COUNT" (=)
Semantics

The sequence of characters generated by the token
action are evaluated as a positive decimal integerxr. The
compiler ensures that only digits can be marked as kept 1in
an alternative possessing an evaluate token-action. The
value resulting from this evaluation can then be referenced
by the FSCAN program by using the name of the rule
containing the evaluate token-action as an exponent in the
** or *? operators. The value of such a "variable" exponent
1s always the result of the most recent evaluate token-
action performed by the rule named by the variable.

- 12 -

3. THE COMPILER

The FSCAN compiler consists of 5500 lines of standard
ANSI FORTRAN code. 1In addition, there is a group of short
(1 to 5 lines) routines that are machine dependent. (See
Appendix A).

The compiler takes one input file containing an FSCAN
program and produces three output files - a listing file
annotated with the number of the first token on each line, a
tables file «containing the generated object code, and an
errors file describing any errors in the input. The files
are associated with the FORTRAN logical unit numbers five,
six, seven, and zero respectively.

The compiler contains eight processing modules that
perform the following tasks:

3.1. Lexical Analysis, Syntactic Analysis, and Tree
Construction

The 1input is read and all syntactic errors are
reported. If the input is syntactically correct, a parse

tree corresponding to the input grammar is built, otherwise
processing stops after the entire input has been scanned for
syntactic correctness.

3.2. symbol Identification

Each applied occurrence of a symbol (i.e., in the right
sides of rules) is associated with its defining occurrence
(i.e., the rule in which that symbol was defined). In
addition the following errors are detected and reported:

(1) A scanner's beginning goal symbol is different from its
ending goal symbol (probably due to improper scanner
nesting that could not be detected by the parser).

(2) A nonterminal is defined by two different rules within
the same scanner.

(3) No rule defines the goal symbol of a scanner.

(4) A variable exponent is defined in something other than
a rule with an evaluate token-action.

(5) A symbol is used that has not been defined by any rule.

(6) A symbol that is an alternative of an ELSE, a screening
action, or the base of ** or *2?, is defined in

A e i e

- 13 -

something other than a procedure rule.
If any of the above errors occur, processing 1is halted

following the completion of the symbol identification phase.

3.3. Character Set Creation

The terminals are converted to a set containing the
appropriate character and, where feasible, set operations

corresponding to FSCAN operators are performed (i.e., *‘/'
and 'NOT') and the operator node is replaced by the
resulting set. In addition, by propagating attribute

vectors down and then back up the tree, the following errors
are detected and reported:

(1) A macro rule is recursively defined.

{(2) A variable exponent is used before the variable could
have received a value.

(3) A 'NOT' operator is applied to something other than a
character set.

(4) A terminal string other than EOL consists of more than
one character.

(5) A rule containing a kept character is used in a context
where the kept character 1s associated with no token.

{6) A rule generating a token is used in a context where
another token is currently being built.

(7) A rule containing untokenized kept characters and a
rule producing tokens appear in the same context
(either error 5 or error 6).

(8) Non-digit characters are kept in a context where an
evaluate token-action could occur.

(9) A token type is used without being declared in the
TOKENS section.

(10) A token type is multiply declared in the TOKENS
section.

(11) A token type is declared to be deleted(kept), but used
as kept(deleted).

If any of the above errors occur, processing is halted
following the completion of the character set creation
phase.

- 14 -

3.4. Tree Threading

The tree is converted to a directed acyclic graph by
the addition of directed edges. This additional linkage
allows the LR processing to be performed efficiently.

3.5. Code Generation

The code for a lexical analyzer that will perform the
. analysis specified by the user's grammar is generated. This
' code 1is written out to a scratch file as it is produced.

’ 3.6. Code Verification

The parse tree is purged and the code from the scratch
file is read into memory. It is then verified that the code
specifies a deterministic machine that will halt on finite
f input. If the grammar specified nondeterministic or non-
, halting behavior, this is reported as an error, and
processing will halt following completion of the code
verification phase. A nondeterminism error or "action
conflict" is reported by listing the group of actions that,
according to the grammar, would have to be performed
concurrently or nondeterministically. A non-halting error
is reported by indicating the action that, for certain
input, would be repetitively executed infinitely.

3.7. Code Assewbly and Optimization

Address locations are compiled and assembled into the
code. Also the code is compacted by collapsing equivalent
character sets into a single character set.

d 3.8. Code Qutput

The final code is output in the form of FORTRAN BLOCK
DATA subprograms and appropriate accessing functions.

- 15 -

4. THE OBJECT CODE INTERPRETER

The object code interpreter, in conjunction with the
object code produced by the FSCAN compiler, forms a lexical
analyzer that will process a stream of input characters and
produce a stream of lexical units (tokens) as specified by

‘ the FSCAN program that was compiled. The interpreter is
written in standard ANSI FORTRAN. In addition there is a
group of short (1 to 5 1line) routines that are machine
dependent (see Appendix B).

-

4.1. Input Interface

' The stream of input characters is obtained by the
interpreter through repeated calls to the user-supplied
routine, GETBUF. The subroutine, GETBUF, has one input
formal parameter, MBUFFR, and four output formal parameters,
BUFFER, LBUFFR, EOLFLG, and EOFFLG:

SUBROUTINE GETBUF (MBUFFR, BUFFER, LBUFFR, EOLFLG, EOFFLG)
. INTEGER MBUFFR, BUFFER, LBUFFR
LOGICAL EOLFLG,EOFFLG]
DIMENSION BUFFER(MBUFFR)

MBUFFR specifies the maximum number of characters that
should be placed in BUFFER, one character per array element.

[P

LBUFFR specifies the number of characters that were
placed in BUFFER. EOLFLG 1is set to be true iff an EOL
. character is to be appended to the stream of characters

being returned in BUFFER. This EOL character is referenced .
in an PSCAN program by the terminal 'EOL' or "EOL". EOFFLG ﬁ
is set to be true iff there are no more characters to be
sent. When EOFFLG is true, the values of BUFFER, LBUFFR, and .

EOLFLG are ignored.

o
»

4.2. Output Interface

The interpreter must be initialized by a call to the
subroutine INISCN. Following this initialization, the
stream of tokens is obtained by making successive calls to
the subroutine, SCANNR. SCANNR has four output parameters,
all appearing in the labeled common block, /TOKENC/:

SUBROUTINE SCANNR
COMMON/TOKENC/TKNTYP, KTFLAG, ITKNCH, TKNCHR(30)

e e eee—e e A

- 16 -

TKNTYP is an integer variable indicating the type of
the token, KTFLAG is a logical variable that is true for a
kept-token and false for deleted-token, ITKNCH is an integer
variable indicating the number of kept-characters in the
token, TKNCHR is an array containing the kept-characters
(one character per array element).

4.3. Errors Reported by the Interpreter

.3.1. Recoverable Errors

>

The following recoverable errors are reported by the
lexical analyzer by generating a call of the form:

CALL SCNERR (i)

where i is an integer in the range, (1..10), indicating
which error occurred.

(1) Token is too 1long, i.e., the number of characters
marked as kept 1is larger than the size of the array,
TKNCHR. The default size of TKNCHR is 30. If longer

tokens are desired the interpreter would have to be
modified by increasing the size of TKNCHR and changing
the initialization of the variable MTKNCH to be the new
size.

Recovery: The token is truncated on the right.

(2) Token contains erroneous characters. An erroneous
character 1s one that is not an element of the set of
expected characters of the state of the interpreter at
the time the character was encountered. An erroneous
character is processed by the interpreter by skipping
over the erroneous character without changing the state
of the interpreter.

Recovery: Erroneous characters are marked as deleted.
(3) Token to be screened contains erroneous characters
Recovery: Erroneous characters are marked as deleted.

(4) Screening terminated with characters remaining in token
to be screened.

Recovery: The characters remaining in the token are
ignored.

A

- 17 =

(5) Erroneous characters occurred in token being screened,
and screening terminated at the end of the token while
skipping over erroneous characters.

Recovery: None necessary.

(6) End of input stream occurred prematurely.
Recovery: An EOFTOK token 1s generated.

(7) Erroneous characters occurred in input stream and end
of input stream occurred while skipping over erroneous
characters.

. Recovery: An EOFTOK token is generated.

(8) End of token occurred prematurely while screening.

Recovery: Screening terminated and processing
continues.

(9) Erroneous characters occurred in input stream, and the

. end of the characters read in by the most recent call
to GETBUF reached while skipping over erroneous
characters.

Recovery: the lexical analyzer is reset to its initial
state before the next call to GETBUF.

(10) The current call to GETBUF returns more characters than

there is room for in the internal character buffer of
the lexical analyzer.

Recovery: The lexical analyzer is reset to its initial
state and the previous contents of its internal buffer
is flushed. Note: It may be necessary to increase the
size of the internal buffer to prevent this error. See
fatal error six.

JR S

4.3.2. Fatal Errors

The following fatal errors are reported by the lexical
analyzer by generating a call of the form:

CALL FTLERR (i)
where i is an integer in the range, (1l..4)

g (1) The "call stack" overflowed.

To f£fix this error, the FSCAN program should be
rewritten to generate less procedure-call nesting at

(2)

(3)

(4)

- 18 -

run-time. Alternatively, the size of the array,
CSTACK, in the labeled common block, /CSTAKC/, must be
increased, and MCSTAC must be initialized in the block

data subprogram, SCANBD, to a value corresponding to
the new size of CSTACK.

The "keep" stack overflowed.

To fix this error, the FSCAN program should be
rewritten to generate fewer tokens within the operands
of an ELSE construct or the operand of a 2%,
Alternatively, the size of the array, KSTACK, in the
labeled common block, /KSTAKC/, must be increased, and
MKSTAC must be initialized in the block data
subprogram, SCANBD, to a value corresponding to the new
size of KSTACK.

Illegal action on call stack.
An internal error that should never occur.
Error in backup.

An internal error that should never occur.

- 19 -

5. FSCAN-SUBSET OBJECT CODE INTERPRETER

For many lexical analyzers, the full power of FSCAN is
unnecessary. For these analyzers, a smaller and more
efficient interpreter is available. This interpreter can be
used on the object code produced from FSCAN programs that
satisfy the following restrictions:

- The operators, ELSE, **, and ?* may not be used.
- Nonterminal and evaluate token-actions may not be used.

- All characters of a token must occur in the characters
returned from a single call to GETBUF.

5.1. 1Input Interface
See standard interpreter.
5.2. OQutput Interface
See standard interpreter.
5.3. Errors Reported by the Interpreter

1%,

.g.l. Recoverable Errors

(1) Recoverable error 1 from standard interpreter.
(2) Recoverable error 2 from standard interpreter.
(3) Recoverable error 6 from standard interpreter.

(4) Token extends past end of the characters read in by the
last call to GETBUF.

Recovery: The lexical analyzer is reset to its initial
state and the current contents of BUFFER is flushed.

5.3.2. Fatal Errors

(1) Fatal error 1 from standard interpreter.
(2) Fatal error 2 from standard interpreter.

(3) 1Illegal action for the FSCAN-subset interpreter.

To fix this error, the FSCAN program should be

(4)

- 20 -~

rewritten to satisfy the requirements of the FSCAN-
subset. Alternatively the regular interpreter must be
used instead of the subset interpreter.

GETBUF returned too many characters.

To fix this error, the GETBUF routine should be
rewritten to return fewer than MBUFFR characters, (i.e.
MBUFFR > LBUFFR), where MBUFFR and LBUFFR are arguments
to the GETBUF routine.

'
|
i
'
J
)
I

(1l

(2]

£3]

L4]

- 21 -

References

ANSI : FORTRAN. X3.9-1966, American National Standards
Institute 1966.

ANSI : FORTRAN 77. X3.9-1978, American National
Standards Institute 1978.

Osterweil, L. J.:; ana Fosdick, L. D. "DAVE - a
validation, error detection and documentation systen
for FORTRAN programs, " Software Practice and
Experience. - -

DeRemer, F., SVG Memos #69-72, #76-77, %80, #83-84.
Dept. of Computer Science, University of Colorado at
Boulder, Boulder, Colorado, 1977.

- 22 -

Appendix A:
Machine Dependencies in the FSCAN compiler

1l. Machine Dependent Constants

1.1. NBTPWD

l) NBTPWD in /NBTPWC/ is the number of bits in a machine
L word.

2. Machine Dependent Primitives

2.1. INTEGER FUNCTION INTGER (CHAR)

, Input:
: CHAR contains a character stored in 1H (or Al) format.
Result:
The ASCII code for the character, CHAR (an integer
between 0 and 127).

2.2. INTEGER FUNCTION CHRCTR (INT)

This 1s the inverse of the INTGER function.

2.3. INTEGER FUNCTION DIG (CHAR)

same as INTGER

Result:
If the character is a digit the resrlt is the integer
value of the digit (0-9); otherwise the result is -1.

in
1>

INTEGEK FUNCTION IAND (I1,I2)
INTEGER FUNCTION IOR (1I,12)
INTEGER FUNCTION INOT (I1)

These functions return the result of the bitwise
logical operation of AND, OR and NOT, respectively.

2.5. INTEGER FUNCTION HOLCHR (HCONST, ICHAR)

Input: '
HCONST is a Hollerith constant of the form
nHc lc 2...c n where n is an unsigned positive integer
and c_1 is a character, i=1..n. ICHAR is an integer
between 1 and n.

Result:
HOLCHR(HCONST, i) will return c i, stored in Al or 1H
format.

jon

- 23 ~

INTEGER FUNCTION LRS (IVAL, ICOUNT)
INTEGER FUNCTION LLS (IVAL, ICOUNT)

LRS and LLS return the logical shift (end-off, zero-
fill), right and left respectively, of ICOUNT binary
positions of the value, IVAL.

- 24 -

Appendix B:

Machine Dependencies in the FSCAN object code interpreter.

The following machine dependent

required:

1. INTEGER
2. INTEGER
3. INTEGER
4. INTEGER
5. INTEGER

These routines are described in Appendix A.

FUNCTION INTGER (CHAR)
FUNCTION CHRCTR (INT)
FUNCTION DIG (CHAR)
FUNCTION LRS (IVAL, ICOUNT)

FUNCTION LLS (IVAL, ICOUNT)

primitives

- 25 -

Appendix C :
Syntax of FSCAN programs

PROGRAM ~-> 'TOKENS' TERMINAL+ SCANNER '.' ;
SCANNER
-> 'SCANNER' GOAL_SYMBOL ':'
(RULE ';')+ 'END' GOAL_SYMBOL ;

RULE

—-> NONTERMINAL ('~>' REG_EXPRN ('=>' ACTION)?)+

-> SCANNER

REG_EXPRN -> REG_TERM // '/' ;

REG_TERM -> REG_PHRASE+ ;

REG_PHRASE -> REG_FACTOR ('//' REG_FACTOR)? ;

REG_FACTOR
=> REG_PRIMARY ('*'/'+'/'2')?
-> 'NOT' REG_PRIMARY ;

REG_PRIMARY
-> '(' REG_EXPRN? ')°*
-> NONTERMINAL // 'ELSE'
-> NONTERMINAL '**' EXPONENT
-> TERMINAL ;

ACTION
-> TERMINAL SCREENER?
-> SCREENER ;

SCREENER

-> '(' NONTERMINAL ')
- o(u 1o n)n .

’

EXPONENT
-> INTEGER
-> (INTEGER)
-=> () ;
INTEGER -> NONTERMINAL / '<INTEGER>' ;
GOAL_SYMBOL ~> '<NAME>' ;
NONTERMINAL -> '<NAME>' ;
SCREENER =-> '<NAME>' ;

TERMINAL -> '<KEPT_STRING>' / '<DELETED STRING>'

.
’,

